본문 바로가기

자료

머신러닝(Machine Learning) 8장 - Softmax regression의 cost함수 머신러닝(Machine Learning) 8장 - Softmax regression의 cost함수 - 우리는 앞장에서 여래 개의 결과 값을 가질 수 있는 형태의 regression에 대해 살펴보았다. 각각의 데이터에 대해서 binary 형태의 선형 구분을 해주어 이에 따라 각각에 대한 알고리즘을 실행시켜 해당하는지 아닌지를 예측하게 되었다. 이를 위해 행렬의 형태를 사용하게 간단하게 표현을 할 수 있었다. 우리는 또한 결과 값이 sigmoid function을 통해 0과 1사이의 값을 가지게 만들고 싶었다. 그래서 각각의 알고리즘을 돌린 결과에 대해 p라는 확률적인 값을 가지게 만들고 싶다. 이런 방법을 해주는 것이 바로 Softmax라는 기법이다. 특정 데이터 결과 값들에 Softmax라는 함수를 넣어.. 더보기
머신러닝(Machine Learning) 7장 - Multinomial classification 머신러닝(Machine Learning) 7장 - Multinomial classification - 앞장에서 Logistic regression에 대한 설명을 하였는데 잠깐 요약하게 되면 Logistic regression 중 binary 결과 값에 대한 예측을 진행하였다. 0과 1에 중에 하나의 값을 결과 값으로 가져야하는데 Linear regression을 사용하게 되면 선형적으로 결과 값이 증가하거나 감소하기 때문에 결과 값을 나타내기 힘들었다. 따라서 sigmoid function을 이용하여 결과 값이 0과 1 사이에서만 나타나게 만들고 0.5의 기준을 가지고 0인지 1인지를 구분하게 되었다. 그런데 여기서 결과 값이 0과 1만이 아니라 학점과 같이 A, B, C, D, F 와 같은 형태로 다양.. 더보기
머신러닝(Machin Learning) 6장 - Logistic Regression 의 cost function 머신러닝(Machin Learning) 6장 - Logistic Regression 의 cost function - Cost function은 예측을 하는 값과 실제 결과 값의 차이를 나타내는 함수이다. 예측을 하는 데이터를 바꾸어가면서 실제 결과 값과 차이를 그래프로 나타낼 수 있다. 제일 적절한 예측을 하는 가설은 바로 cost function이 최소가 되는 가설일 것이다. Linear Regression을 사용할 때는 다음과 같은 cost function을 사용하였다. 앞의 cost function을 이용하여 Logistic Regression에 해당하는 그래프를 그리게 되면 볼록한 형태가 아니라 울퉁불퉁한 형태가 나와서 Gradient descent algorithm을 통해 최솟값을 구할 수 없게.. 더보기
머신러닝(Machine Learning) 5장 - Logistic (Regression) Classification 머신러닝(Machine Learning) 5장 - Logistic (Regression) Classification - Logistic Classification은 Classification 알고리즘들 중에서 굉장히 정확도가 높은 알고리즘으로 알려져 있다. 따라서 실제 문제에도 바로 적용해볼 수 있을 정도로 좋은 알고리즘이다. 또한 머신러닝의 Neural Network과 Deep Learning의 중요한 요소로 작용하기 때문에 자세히 알아놓아야 한다. 이번 시간에는 Classification 중에서 Binary Classification으로 둘 중에 무엇에 속하는지를 판별하는 알고리즘을 생각할 것이다. 예를 들면 스팸 감시가 될 수 있다. 특정 메일이 왔을 때 그 메일이 스팸인지 아닌지에 대한 판별이 필.. 더보기
머신러닝(Machine Learning) 4장 - Multi-variable Linear regression 머신러닝(Machine Learning) 4장 - Multi-variable Linear regression - 앞의 과정을 잠깐 정리를 해보자. Linear Regression은 선형적으로 값을 예측하는 방법으로 우선 가설로 H(x) = Wx + b라는 형태의 식을 사용하였다. 이를 통해 실제 결과 값과의 차이인 cost function을 정의할 수 있었고 cost function을 최소화시키는 Gradient descent algorithm에 의해 가장 최적화된 예측 형태를 만들어 낼 수 있었다. 그런데 우리는 여기서 입력 값으로 x라는 값을 하나만 사용하였다. 그런데 하나가 아니라 여러 개의 입력 값을 가지게 되면 어떻게 될까? 특정한 예시로 기말고사의 성적을 예측하는데 중간고사와 2번의 퀴즈를 본.. 더보기
머신러닝(Machine Learning) 3장 - Linear Regression의 cost 최소화 알고리즘 머신러닝(Machine Learning) 3장 - Linear Regression의 cost 최소화 알고리즘 - Regression은 우선 Supervised Learning의 종류로 연속적인 데이터로 결과 값을 도출하는 머신러닝의 기법이다. 그 중 Linear Regression은 선형적인 예측을 하는 방법인데 H(x) = Wx + b 와 같은 형태로 예측의 가설을 만들 수 있었다. 가설을 바탕으로 실제 결과 값과 차이를 비교하여 cost function의 값을 만들었다. 그리고 예측을 최적화하는 방법은 바로 cost function의 값을 최소화로 만드는 작업이 될 것이다. 쉽게 이해하기 위해 b라는 값을 0이라고 생각하고 가설을 H(x) = Wx 라는 형태로 먼저 살펴볼 것이다. 그러면 cost f.. 더보기
머신러닝(Machine Learning) 2장 - Linear Regression의 Hypothesis와 cost 머신러닝(Machine Learning) 2장 - Linear Regression의 Hypothesis와 cost - 1장에서 예시로 사용한 투자한 시간에 대비하는 성적에 대한 예측을 하는 머신러닝을 통해 regression에 대해 다시 생각해보자. training data set는 투자한 시간과 이에 대한 결과 값인 점수가 연속적인 숫자로 나타나게 된다. Regression의 기법을 통해 학습이 되고 난 후에 특정 시간을 입력하게 되면 이에 따른 결과 값을 내보내 준다. 예를 들면 7시간을 넣을 경우 65점 정도의 값을 나타나게 해주는 것이다. Regression을 적용시키기 위해 간단한 데이터를 적용시켜보자. 입력 값인 x에 1, 2, 3을 주어주고 이에 해당하는 결과 값인 y값으로 1, 2, 3을 .. 더보기
머신러닝(Machine Learning) 1장 - 용어와 개념 설명 머신러닝(Machine Learning) 1장 - 용어와 개념 설명 - 머신러닝은 과연 무엇인가? 머신러닝은 일종의 소프트웨어이다. 일반적으로 사용하는 웹과 앱과 같은 서비스를 제공해주는 기능을 수행한다. 현재 나와 있는 다양한 소프트웨어들은 프로그래머들에 의해 어떻게 어떤 기능을 수행하라는 것이 다 정해져 있다. 하지만 실제 상황에서 항상 그러한 조건이 맞아 떨어지는 것은 아니다. 예를 들면 메일을 받을 때 스팸 메일인지 아닌지를 알기 위한 조건이 매우 많이 필요하다. 실재로 개발자들이 일일이 나누어 코드를 작성할 수가 없다. 또한 자율 주행 자동차에 대한 예시를 보아도 모든 길에 대해 코드를 작성하여 자율적으로 주행을 하도록 만드는 일은 매우 힘들다. 그래서 1959년 Arthur에 의해 일일이 프로.. 더보기